E	Mechatronics Engineering Program Total Markey (50) Marks	
Tanta University	Final Exam	Faculty of Engineering
Course Title: Engineering Physics (Date: 25 th of May 2024	3) Course Code: EMP X43 Allowed time: (120) Min.	Year: 2023/2024 No. of Pages: (2)

Question No. 1 :(25) Marks

(A)	The wave function for a traveling wave on a taut string is (in SI units) $y(x, t) = 0.35 \sin(10\pi t - 3\pi x + \pi/4)$. (1) What are the speed and direction of travel of the wave? (2) What is the vertical position of an element of the string at $t = 0, x = 0.1$ m? What are (3) the wavelength and (4) the frequency of the wave? (5) What is the maximum transverse speed of an element of the string?	
(B)	 By measurement you determine that sound waves are spreading out equally in all directions from a point source and that the intensity is at 0.0026 W/m² a distance of 4.3 m from the source. (1) What is the intensity at a distance of 3.1 m from the source? (2) How much sound energy does the source emit in one hour if its power output remains constant? 	
(C)	At a frequency of 1,000 Hz , the human ear can detect the loudest and faintest sounds with intensities of about 1.0 W/m² and 1.0 × 10⁻¹² W/m² , respectively. For sound waves traveling with a speed of $v = 343$ m/s, find the pressure amplitude ΔP_{max} for the faintest and the loudest sound waves, assuming the air's density is $\rho = 1.21$ kg/m ³	
(D)	prove that: the speed of sound in ideal gas is equal to $v = \sqrt{\gamma RT/M}$ where T is the Kelvin temperature, M is the molar mass, and <i>R</i> is gas constant where $\gamma =$ is the ratio of the specific heat capacity at constant pressure to the specific heat capacity at constant volume	
(E)	Two identical speakers, S_1 and S_2 , are placed horizontally at a distance $d = 2m$ apart. Each emits sound waves of wavelength $\lambda = 80$ cm driven by the same oscillator. A listener is originally located at point 0, which is midway between the two speakers. The listener walks to point P, which is a distance x from 0, and reaches the first minimum in sound intensity. Find x.	3 Marks
(F)	The siren is moving away from the listener with a speed of 45 m/s relative to the air, and the listener is moving toward the siren with a speed of 15 m/s relative to the air. What frequency does the listener hear? Given that $f_s = 300$ Hz and the speed of sound is 340 m/s	3 Marks

(G)	A background noise in a hall sets up a fundamental standing wave frequency in a tube of length $L=0.7$ m. What is the value of this fundamental frequency if your ear blocks one end of the tube and when your ear is far from the tube Take $v=343$ m/s as the speed of sound in air.	3 Marł
uesti	on No. 2 :(25) Marks	
(A)	In the corresponding figure, a ray of light falls from the air onto the surface of the Glass, and the refracted ray is perpendicular to the reflected ray. Calculate the value of the incident angle, θ_1 and refracted angle ϕ_1 (note sin (90- ϕ) = cos θ), ng=1.5.	5 Marł
(B)	Coherent light of frequency 6.32×10^{14} Hz passes through two thin slits and falls on a screen 85.0 cm away. You observe that the Fourth bright fringe occurs at ± 3.11 cm on either side of the central bright fringe. (1) How far apart are the two slits? (2) At what distance from the central bright fringe will the third dark fringe occur?	
(C)	We wish to coat flat glass (n = 1.5) with a transparent material (n = 1.6) so that reflection of light at wavelength 550 nm is eliminated by interference. Find (1) least and (2) second least thicknesses of the film can the coating have to do this?	
(D)	A two-slit Fraunhofer interference–diffraction pattern is observed using light that has a wavelength equal to 500 nm . The slits have a separation of 0.1 mm and an unknown width . (1) Find the width if the Fourth interference maximum is at the same angle as the first diffraction minimum. (2) For that case, how many bright interference fringes will be seen in the central diffraction maximum?	
	Using drawing and mathematical equations discuss in details : 1- Intensity of Double-Slit Diffraction Patterns.	5 Mori

Best wishes: Prof. Hatem Fouad & Assoc. Prof. Ayman Rabie